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The authors have noticed that equation (8) in the above
article was displayed incorrectly which was an inadvertent
typographical mistake on their part. The corrected version
of this equation is as follows:
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However, the computations of the results were performed
using the correct equation and hence the conclusions remain
the same.
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Abstract
We study the effect of a dynamically screened deformation potential on the electron longitudinal
phonon relaxation in a disordered two-dimensional electron gas. On consideration of the
dynamic dielectric function and polarization operator, and the frequency ω dependence, we find
a significant change in the temperature exponent as well as the pre-factor α from the earlier
reported approximate temperature power law dependence αT 4 obtained under static strong
screening and impurity limit. More strikingly, a reversal in the character of the dependence of
scattering rate on the mean free path takes place on the incorporation of dynamic screening,
where the behaviour changes from the static 1/ l to the dynamic l2 at T = 1.0 K and l = 10 nm.

1. Introduction

The quantum transport properties of mesoscopic and disor-
dered systems are governed by several quantum interference
phenomena that involve electron dephasing processes. The
dephasing time is the time interval until which the electron
maintains its exact single-electron energy eigenstate in the
presence of static impurities [1, 2]. The electronic state is
changed because of transitions that occur between the energy
eigenstates due to electron–electron (e–e), electron–phonon
(e–ph) and impurities having internal degrees of freedom like
dynamical defects or electron–magnetic–impurity interactions.
These interactions influence the dephasing (phase breaking)
and other relaxation processes and they significantly affect
both the electronic transport as well as the temperature
dependences of disordered mesoscopic systems [2, 3]. At
low temperatures, when the elastic scattering rate dominates
the e–e scattering, the electronic motion is diffusive between
scattering events with other electrons. The diffusive motion of
the electron causes it to remain in the interaction region for a
longer time and thereby increases the interaction time. Because
of this both the e–e and e–ph interactions are considerably
enhanced in bulk and nanosystems [4].

The e–ph interaction problem in impure conductors has
been considered in the literature for about three decades. Over

the last few years the problem has been revisited. But despite
progress in the theory the issue has not been settled completely
yet [2, 4, 5]. No systematic experimental investigation on
the disorder-induced modification of relaxation through the e–
ph interaction in semiconductors may possible be one of the
reasons [6]. The e–ph interaction in disordered systems is
much more complicated than in pure bulk systems. Even for
the case of disordered systems the theory for metals does not
work for semiconductors since the structure of the deformation
potential (DP) differs for metals and semiconductors [7, 8].
For the case of acoustic scattering in semiconductors, DP and
piezoelectricity are two important types of mechanism. The
interaction between electrons and acoustic phonons via DP
is most important above 2 K while below 2 K piezoelectric
coupling is dominant, for a two-dimensional electron gas
(2DEG) GaAs system [9, 10]. However, the temperature
range for the dominant scattering mechanism depends upon
the particular type of semiconductor. The DP interaction
in semiconductors arises from local changes in the crystal’s
energy bands due to the lattice distortion caused by a phonon.
The DP creates one of the major scattering mechanisms in
non-polar semiconductors. Indeed, the DP interaction is
a dominant source of electron energy loss in silicon-based
electronic devices [11]. Nonetheless, the DP interaction is
important for other semiconductor material devices as well.
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Electron relaxation through the e–ph scattering via the
DP in disordered semiconductor nanostructures has drawn
considerable interest in recent years [6, 12, 13]. Sergeev
et al have obtained analytical results on the e–ph scattering
rates via the DP for nanostructures. Various temperature (T )
and mean free path (l) dependences have been determined
depending upon the amount of disorder and the contribution
due to scattering of electrons by the static potential due to
heavy defects and/or tough boundaries relative to the vibrating
potential [12]. Nonetheless, it is known that, in the presence
of a many-electron system, the Coulombic interaction is
dynamically screened, which is a process whose behaviour is
well captured by the random phase approximation dynamic
dielectric function [14]. The significance of the dynamic
screening has been emphasized in a number of papers [15–18].
Studies on the photoexcited populations have shown that
the assumption of static screening underestimates the energy
relaxation and therefore dynamic screening should be taken
into account [15]. In the presence of strong disorder or high
magnetic field, the reduced mean free path (and magnetic
length) puts the 2D system into a regime where dynamic
screening plays a crucial role [16]. Also, as the plasmon
dispersion in 2DEG and 1DEG goes to zero as the momentum,
q , gets smaller, dynamical effects are expected to be important
for small q [19].

It therefore can be concluded from the above arguments
that the dynamically screened DP in the presence of disorder
is quite significant since it affects the electronic motion.
Hence, we investigated the e–ph relaxation rate in a disordered
2DEG confined to a GaAs system interacting with bulk (3D)
phonons in the diffusive limit incorporating the dynamic DP
and polarization functions, to determine by what magnitude
and to what degree and character the dynamical behaviour
of these functions influence the relaxation rate. Our paper
is organized as follows: section 2 describes the formalism,
section 3 contains the results and discussion, and finally
section 4 concludes the work.

2. Formalism

The e–ph relaxation rate, τ−1
e−ph, is determined by the following

kinetic equation [20, 21]:

1

τe−ph
= − δ

δn(ε)

dn(ε)

dt
(1)

where n(ε) is the non-equilibrium electron distribution
function in a spatially uniform system. In equilibrium, the
phonon and electron distribution functions, respectively, are
Nω = Neq

ωq and nε = neq
εq , and τ−1

e−ph at the Fermi surface
(ε = 0) is given by [12]
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in which τ is the electron momentum relaxation time due to
electron impurity scattering, q is the 3D phonon momentum,

q is the characteristic momentum transferred to the electron
due to the e–ph scattering, γ = D0(q · ê)/(2ρωq)

1/2 is
the unscreened vertex of the e–ph DP interaction, D0 is the
constant of the DP, ê is the polarization vector, ρ is the density
of the material, ωq = |q|u, ωq is the linear dispersion and
u is the longitudinal sound velocity. Re[ε(ωq , q)] is the real
part of the dynamic dielectric function and Re[ξ(ωq, q)/(1 −
ξ(ωq , q))] is the real part of the polarization function that has
been obtained by simplifying the response function, in which
ξ(ωq , q) is an integral over the impurity averaged electron
Green functions.

Equation (2) is applicable to the case of arbitrary
dimensionality. For determining the 2D e–ph relaxation rate
we substitute in this equation the 2D dielectric function and
polarization function and work out the scattering rate. For the
case of 2DEG the polarization function ξ(ωq, q) is determined
from the following equation;

ξ(ω, qll ) = 1

πντ

∫
dp

(2π)2
G A(p, ε)G R(p + qll, ε + ω) (3)

where qll is the phonon wavevector along 2DEG and ν is the
electronic density of states. On integration and replacing ω by
ωq , equation (3) yields [22]

ξ(ωq , qll) = 1√
(1 − iωqτ )2 + (qll l)2

(4)

where l = νFτ is the electron mean free path due to scattering
from impurities and νF is the Fermi velocity. For qll l > u/νF ∼
10−2, ω dependence in ξ has been neglected in [12]. The
screened DP involves the dielectric function defined as follows:

ε(ωq , qll) = 1 + V 0(qll)�(ωq , qll) (5)

where V 0(qll) = 2πe2/ε0qll is the 2D Fourier transform of
the bare Coulomb potential, e is the electronic charge, ε0

is the background dielectric constant and �(ωq , qll) is the
polarization operator. In the limit of small q and ω, the
dielectric function is given by [14]

ε(ωq, qll) = 1 + 2πe2

ε0qll

υDq2
ll

−iωq + Dq2
ll

(6)

where D = ν2
Fτ/2 is the 2D diffusion constant. The 2D

electronic density of states is given by ν = m∗/π h̄2, where
m∗ is the effective electronic mass. For ωq � Dq2

ll , the ωq

dependence of the dielectric function can be dropped to yield

ε(qll) = 1 + k2

qll
(7)

where k2 = 2πe2ν is the inverse screening length.
The relaxation rates have been calculated in [12] from

equation (2) by substituting ε(qll) and ξ(qll), static dielectric
and polarization functions. In terms of dimensionless
parameters x = h̄qu/kBT , y = kBT l/h̄u and z = kBT/h̄uk2,
where kB and h̄ are Boltzmann’s and Planck’s constants,
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respectively, equation (2) with the use of equations (6) and (4)
is given by
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Equation (8) is the elaborated equation for the electron
relaxation rate incorporating the dynamic screened DP and
dynamic polarization function in the diffusive limit (small q
and ω).

3. Results and discussion

Approximate analytical results in the static weak and strong
screening conditions and in quasi-ballistic (qll l > 1) and
impure limits (qll l < 1) have earlier been reported for
disordered nanostructures [12]. To trace the dependence of
e–ph relaxation rates more rigorously on temperature and
disorder, we took recourse to numerical calculations. Our
computed results have been obtained for the cases of static as
well as dynamic ε(ωq, qll ) and ξ(ωq , qll) in the impure limit
(T < h̄u/kBl). Our computed results are compared with
earlier reported analytical results on τ−1

e−ph:

τ−1
e−ph = π2 D2

0k4
BT 4/(4ρk2

2lvFh̄5u5); (9)

which has been obtained under the approximation of strong
screening and impure limit [12]. The τ−1

e−ph has been computed
as a function of T and l for disordered 2DEG confined to a
GaAs system that has been modelled in terms of the following
material parameters: D0 = 8.0 eV, ε0 = 12.5, u = 5.2 ×
105 cm s−1, ρ = 5.2 g cm−3, m∗ = 0.067m and electron
density n = 1 × 1011 cm−2 [23]. The τ−1

e−ph has been plotted in
figures 1(a) and (b) as a function of T for two different values
of l = 3×10−7 cm and l = 3×10−8 cm, respectively. Curve A
in figure 1(a) displays the earlier reported analytical result for
the static screening case (ωq dependence is dropped in ε and
ξ ) and curve B represents our numerically computed results
for the static screening case from equations (4) and (6) for
ε(qll , ωq = 0) and ξ(qll , ωq = 0). Curve C has been obtained
by computing equation (8) that includes the dynamic screening
by taking ε(qll, ωq) and ξ(qll , ωq), where ωq �= 0. From the
inspection of figure 1(a), which is plotted for the mean free
path l = 3 nm, we find that the inclusion of dynamic screening
brings down the scattering rate by about an order to nearly
two orders of magnitude for the lower and upper values of
temperature, respectively, as compared to the static analytical
result and also the exponent of the temperature decreases from
T 4 for all values of temperature. The power exponent for curve
B varies as (T 3.8–T 3.3) for the lower and upper values of the
plotted range of temperatures. But the more noticeable change
is in the magnitude and power dependence of curve C for which

(a)

(b)

Figure 1. Electron–phonon scattering rate (τ−1
e−ph) is plotted as a

function of temperature (T ) for mean free l = 3 nm (a) and
l = 0.3 nm (b). Curve A displays the approximate analytical results
reported in [12]. Curve B is for static ε and the ξ (ωq dependence is
dropped in equations (4) and (6)), while curve C is obtained using ε
and ξ from equations (4) and (6).

the rate drops by three orders of magnitude for T = 0.2 K but
afterwards the gap narrows and above 4 K curve C lies very
much in close proximity to curve B. The merging of curve C
with curve B for this value of l(=3 nm) and T > 4 K is due
to the fact that the effect of the enhancement of scattering rates
because of dynamic screening is approximately offset by the
suppression of scattering rates due to dynamic ξ(qll , ωq) and
hence the curves lie very close to each other.

The enhancement in the scattering rate occurs due to
plasmon excitation which is accounted for by the dynamic
screening, but the damping is caused by impurity scattering
that is incorporated in the polarization function. The
impurity scattering gets further strengthened on the inclusion
of frequency dependence in the polarization function. For
T > 4 K and l = 3 nm, the overbearing of these two opposite
effects on each other is not that conspicuous: however, for
T < 4 K the suppression due to dynamic ξ is more than
the enhancement by dynamic ε. The power dependence of
curve C also fluctuates from T 6 to T 2.6 for the lower and
upper limits of temperature. The DP is strongly screened
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(a)

(b)

Figure 2. (a) Electron–phonon scattering rate (τ−1
e−ph) is plotted as a

function of the mean free path, l . Curve A displays the analytical
result reported in [12] at T = 1 K. Curve B and curve C are plotted
by taking ωq -independent ε and ξ at T = 1 K and T = 0.1 K,
respectively. (b) Electron–phonon scattering rate (τ−1

e−ph) is plotted as
a function of the mean free path, l , when dynamic screening is
included in ε and ξ (ωq dependence is included). Curve A is for
T = 1 K while curve B is for T = 0.5 K.

at lower temperatures than at higher temperatures and hence
the power exponent is larger at lower values of temperature
but decreases from T 6 to T 2.6 as the temperature increases.
However, figure 1(b), plotted for the case of relatively larger
disorder (l = 0.3 nm), clearly demonstrates the pronounced
effect of the dynamic ξ (around two orders of magnitude at
4 K) over the dynamic screening which strongly suggests the
significant role that the dynamic screening and polarization
play in disordered 2DEG systems. The temperature exponent
of curve C escalates to T 5.98 from that of T 4 of the static case,
curve A. Clearly the dynamic DP and polarization influences
the results significantly.

The other important perspective of e–ph scattering (apart
from the temperature dependence) is the dependence of
scattering on the disorder or elastic mean free path l. Again,
the dependence of relaxation on l in a disordered conductor
is a contentious issue [2]. We plotted the scattering rate
versus the mean free path both for static and dynamic cases,
respectively, in figures 2(a) and (b). For the static case we find
the exponent to vary inversely with l. But for the dynamic case

the scattering rate increases directly with the increasing amount
of disorder which is also supported by experiments that have
been conducted on GaAs/AlGaAs heterostructures [18, 24].
The dependence on the mean free path varies in the plotted
limits of temperature as l1.37–l2 for curve A at T = 1.0 K and
l1.34–l1.96 for curve B at T = 0.5 K. We therefore conclude
from our theoretical study that there is a strong dependence
of e–ph relaxation on dynamic DP and dynamic polarization
function and we expect that the present work will provide
quantitative information on the magnitude and character of
τ−1

e−ph(T, l) which may help experimental investigations.

4. Conclusions

The temperature and mean free path variations of τ−1
e−ph depend

strongly on disorder. The character of the electron–phonon
interaction via the deformation potential (DP) is affected
significantly by the inclusion of the dynamic screened DP
and the dynamic polarization operator. On inclusion of the
dynamic screened DP the temperature exponent is enhanced at
lower temperatures and reduced at higher temperatures from
that of the analytical T 4 result obtained under the statically
screened DP approximation. The magnitude is also reduced
by at most four orders of magnitude in the temperature range
considered for l = 0.3 nm and the temperature dependence
for this dynamic curve is T 5.98. More strikingly, a reversal in
the character of the dependence of scattering on the mean free
path takes place on the incorporation of dynamic screened DP
where the behaviour changes from the static 1/ l to dynamic
l2 at T = 1.0 K and l = 10 nm. Hence, it can be concluded
from our study that the dynamic nature of screened DP plays a
prominent role and governs strongly the temperature and mean
free path dependence of the electron–phonon relaxation.
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